Taylor polynomials of degree n about a

In an earlier section we considered polynomials about zero. However it is possible to generalize the derivation of the formula for a Taylor polynomial about zero that you saw earlier to obtain a formula for a polynomial that approximates a suitable function f close to any
chosen point a in its domain.
Thinks The required formula is given below

Taylor polynomials about a

Let f be a function that is n-times differentiable at a. The Taylor polynomial of degree n about a for f is $p(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{(3)}(a)}{3!}(x-a)^{3}$

$$
+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

As in the case $a=0$ the formula shows that any Taylor polynomial about a point a for a function f can be obtained from a Taylor polynomial of lower degree about a for f by adding the appropriate further
terms. Thinks Also, again as in the case $a=0$ it is possible for the Taylor polynomial of degree n about a for f to be of degree less than n; this happens when $f^{(n)}=0$. Thinks

If p is a Taylor polynomial for a function f about a point a
in its domain, and x is a point close to a, Thinks then $p(x)$ is an approximation for $f(x)$. Usually the greater the degree of the Taylor polynomial, and the closer x is to a, the more accurate the approximation.

Here suitable means that f must be differentiable at a the required number of times.

BuT17
Note
Note

When $a=0$, this reduces to the formula for Taylor polynomials about 0 . Note that the expression $f^{(n)}(a)$ denotes the value of the n 'th derivative of f at a.

Example Find the quartic Taylor polynomial about 1 for the function
$f(x)=\ln x$. Note

Solution The first four derivatives of the function $f(x)=\ln x$ are as follows:

$$
f^{\prime}(x)=\frac{1}{x}, f^{\prime \prime}(x)=-\frac{1}{x^{2}}, f^{(3)}(x)=\frac{2}{x^{3}}, f^{(4)}(x)=-\frac{3 \times 2}{x^{4}}=-\frac{3!}{x^{4}} .
$$

The product 3×2 has been simplified to 3 ! rather than 6 here to highlight the patterns emerging.

Evaluating f and its first four derivatives at 1 gives:

$$
f(1)=0, f^{\prime}(1)=1, f^{\prime \prime}(1)=-1, f^{(3)}(1)=2, f^{(4)}(1)=-3!.
$$

Thinks So by the formula above, the quartic Taylor polynomial about
1 for the function $f(x)=\ln x$ is

$$
0+1 \times(x-1)+\frac{(-1)}{2!}(x-1)^{2}+\frac{2}{3!}(x-1)^{3}+\frac{(-3!)}{4!}(x-1)^{4}
$$

that is,

$$
(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}-\frac{1}{4}(x-1)^{4} . \text { Scribbles }
$$

HAPPY READING!

Notice that we do not multiply out the brackets in this expression. We usually leave a Taylor polynomial about a point a as a sum of terms each of which is the product of a constant and a power of $x-a$.

End of main text. You can now close this page and return to the home page where you can choose to visit a different section.

Note

This is a boxed formula. It is obviously important. We do have a handbook so I won't need to memorize this. It will help to have a feel for it. Is there a pattern? It is a Taylor polynomial about a. Each term, after the first, is a power of $(x-a)$ - indeed so is the first if I think of $(x-a)^{0}=1$. The coefficients are derivatives, evaluated at a, divided by some factorial. The last term gives the pattern - the nth derivative divided by n !. So you need to be able to differentiate the function n times to find this formula. Ah! The preamble says 'Let f be a function that is differentiable n times (at $a)^{\prime}$. OK. I'll want to calculate this quite soon. I don't fancy differentiating a rational function n times! There 's probably an example using this below but can I try one first. Something easy, like $f(x)=x$. Not about 0 that would be silly. Ok. what about $a=1$. After the first derivative everything is zero (that's easy). Now $f(1)=1, f^{\prime}(x)=1$ so $f^{\prime}(1)=1$. The polynomial is $p(x)=1+1(x-1)$. How silly but it does work!

Scribbles

I did that. This seems straightforward. I wonder what the graphs look like.

Not bad! Such a graph would probably need to be done using an aid such as MathCad or graphical calculator.

